
Shepherd’s fire

Written by Bojan Kovač - Last Updated Wednesday, 01 August 2012 11:35

Pulse-width modulation is really useful. One of my ideas was to make a real electronic flame
that was modulated with PWM. Many of you probably help decorating a Christmas tree or
making a nativity scene, containing a shepherd’s fire near the shed at Bethlehem.

As a child, I wondered how to make a shepherd’s fire near the Holy shed. At that time, I did it
with a small lamp covered with red paper, surrounded with some small, slightly burnt wooden
branches. The lamp was battery-powered which, unfortunately, did not last very long. Also, I
was not pleased with a “fire” that glowed constantly. A few years later, as my electronics
knowledge grew, I designed a blinking fire – more like a car’s turn indicator...

Now I know enough to make an electronic flame that flutters like a real one. The prototype is
shown in Figure 2, and is powered by a 5V mobile phone adapter. Because of this, I didn’t
bother to include a 5V regulator on the board, but there is a place for one if you need it.

 Properties of Flames

 1 / 3

Shepherd’s fire

Written by Bojan Kovač - Last Updated Wednesday, 01 August 2012 11:35

If one watches a real fire for an extended time, you’ll notice that it’s unpredictable in terms of the
fluttering, intensity and colour of the flame. To address this, I have designed an electronic
solution that is programmed into a small ATtiny45 microcontroller using Bascom-AVR. The
ATtiny45 microcontroller contains plenty of PWM outputs. If we change the PWM parameters
then we can simulate a really unpredictable fire. The PWM parameters that I change are the
PWM frequency, duty cycle and direction –either rising or falling. On each of five output pins, I
change all of these parameters independently, which really mimics the effect of an
unpredictable flame. In this circuit, I have used eight LEDs connected as shown in the
schematic diagram (Figure 3). On the PCB, the LEDs are placed in a circle, as a flame is
normally circular in shape as well. In the center there are four yellow LEDs that represent the
main flame and should be brighter. Around the perimeter are mixed yellow and red LEDs as
desired.

 Software

A project normally starts with the microcontroller selection, in terms of the number of pins and
available functions etc. For this project I have chosen the ATtiny45: an 8-pin AVR with five (or
six) I/O ports which is supported by the MegaPin & MiniPin II development boards. Because
ATtiny45 is small and comes in a PDIP package, it’s ideal for those who do not like SMD parts.
It’s also attractive to electronic newbies because it shares the same case as the popular NE555,
yet offers much more!

When designing shepherd’s fire, I had a few surprises. The first was that one I/O pin is
connected to the microcontroller’s Reset pin, which means that if I use this pin as an I/O pin
then I can no longer program it using an SPI programmer. Great!

So, I settled on using only five I/O pins. Then I started testing Timer0 and Timer1 individually.
Timer0 performed normally, but Timer1 did not. The reason for this is that Timer1 is an 8-bit
Timer and not the usual 16-bit Timer normally found in AVRs. Therefore, Bascom-AVR refused
to compile my code. After a thorough reading of the datasheet, I discovered the proper settings
for Timer1. In the TCCR1 register you must set a clock prescale factor, after which Timer1 will

 2 / 3

Shepherd’s fire

Written by Bojan Kovač - Last Updated Wednesday, 01 August 2012 11:35

perform as it should.

Shepherd’s fire

2012_AVR_UK_199

Continue reading

 Shop area

 3 / 3

index.php/shop/product/1-bascom-avr-programming

