
3

w w w . s v e t - e l . s i \ e n g l i s h

Dear reader!
In front of you is a book – well not just a book, but more than that. This book
will not only show you how to program AVR microcontrollers with Bascom-
AVR software, but it will also show you microcontroller hardware which, with
the help of your program, will breathe new life into your projects.

When I talk to people involved into programming microcontrollers, I often
hear that the only way to enter this world, is to use either C or assembly
language, because these two languages offer the best possible results. I
partially agree with that statement. It’s true that an engineer, who is fully-
occupied with microcontroller designs, should use C and assembly lan-
guage. One reason is that they have to switch from one microcontroller
family to another very quickly – due to project targets, of course.

But for newbies to microcontroller programming, it’s different – much dif-
ferent! Give them a C compiler, a development board and a goal to dis-
play some data on an LCD, and it is not a piece of cake. Often a newbie
will even have problems with that simple a task.

It is a much different story with Bascom-AVR: ask the same newbie to perform the same task and it will be done in
no time. People, who have attended Bascom seminars that I have presented, are impressed with Bascom’s ease
of programming, in fact, many say that they love to use Bascom. Once attracted to world of microcontrollers, there
is no way back – he or she will probably program microcontrollers as either a hobby or professionally. I have, as a
test, given our development boards along with a few minutes of lectures, to my son and his friend, when they were
10 years old. In no time at all, LEDs were blinking in various ways. Later, my son built himself an LCD scheduler for his
school classes, as well as other projects.

In this book you will find the basics needed to start programming AVR microcontrollers. From the basics you will
advance to the programming and use of some modern electronic devices, such as a graphical LCD with a touch-
screen, GPS, various sensors and many other interesting devices which interface to microcontrollers.

I have known Mr. Vladimir Mitrović for more than 15 years, and I still remember the day when I showed him how to
program with Bascom. He has truly embraced it and upgraded many Bascom programs with very clever assembly
language programming - a winning combination. The ease of programming that is offered by Bascom combined
with full access to the microcontroller, using assembly language, can beat any C compiler that we know of, when
time-efficient programming is concerned.

I am very pleased that Mr. Vladimir Mitrović has decided to contribute some of his fine articles to this book. Without
them, this book would not be the same. In the book, articles by other authors can also be found. The reason is sim-
ple: we found them to be very interesting and they fit the concept of the book. Thanks to Mr. Vladimir Mitrović and
all of the contributing authors for their articles and programs. I also acknowledge the lecturers and the proof-reader,
Mr. Brian Millier, well known Circuit Cellar writer and regular Bascom-AVR programmer, who adapted this book for
English speaking readers.

I dedicate this book to my late son Miha who was a real inventor who loved designing- including microcontroller
design.

Jure Mikeln

Introduction

5

w w w . s v e t - e l . s i \ e n g l i s h

Table of Contents

7 7 INPUTS & OUTPUTINPUTS & OUTPUTSS

In microcontroller applications push buttons are used in most cases. How to use them without un-
wanted contact «bounce« (what is debouncing anyway?), how we can intelligently increase the
number of I/O pins of a microcontroller, driving DC motors and becoming familiar with PWM, are
topics of this chapter.

Get your hands on an AVR microcontroller with help from
Bascom-AVR and start controlling the world around you!

9 Short introduction to programming microcontrollers with Bascom-AVR
21 Programming AVR microcontrollers without a programmer
25 . .. Improved Debounce Routines
31 . .. Wait a minute!
37 . .I/O Expansion
43 . .. Driving motors with AVR
53 . . Something about PWM in Bascom-AVR

55 55 DATA DISPLADATA DISPLAYYSS

Data displays are very important in the world of microcontrollers. With modern graphic LCD displays,
one can design smart-looking products. But in some cases the »classic« 2x16 alphanumeric LCD or
even 7 segment LED display is better-suited. If you have a limited number of I/O pins on your micro-
controller, you might even want to connect your LCD via an SPI interface. All this is covered in this
chapter.

Pick the right display and make sure that your product will stand out!

57 . .. LCD Character Displays
61 . .. Multiple LCDs on the SPI bus
65 . .. Graphical LCD with a touch screen
71 . .7-segment LED display

75 75 DATA MEASUDATA MEASURREMENTEMENT

Human beings live in an analogue world and feel comfortable there. But this is not so for microcon-
trollers, which live in a digital world. After successfully measuring data, we have to transform it into
digital values. We can do this in many ways, by using smart sensors (and smart programming) to get
temperature, air pressure or even a GPS location – all with AVRs.

Get familiar with data measurement using Bascom-AVR!

77 . ..Demystification of 1-Wire® commands
81 Using an SD card with the AVR – DOS File System
85 . .. Measuring analogue values
91 . .. Using a pressure sensor
97 . .. GPS modules, their description and use

6

w w w . s v e t - e l . s i \ e n g l i s h

103 DEVELOPMENT TOOL103 DEVELOPMENT TOOLSS

Having programmed microcontrollers for many years, we have become regular users of develop-
ment boards. There are many available on the market. Some expensive ones attempt to achieve
universality by handling many different MCU models and including many different peripherals on-
board. Others are nothing more than a »break-out« board for a specific MCU device.

In contrast, we have designed optimal development boards, that will meet most of your require-
ments while writing/testing your AVR programs. These boards emerged from extensive usage in our
daily work, so there are very good reasons why our tools are designed as illustrated in this chapter.

Use smart tools when writing your Bascom-AVR programs!

105 .. MiniPin II development board
113 .. MegaPin development board
127 Proggy II, an in-system programmer for AVR microcontrollers
133 .. Debugging Bascom programs in AVR Studio
137 .. Let’s explore Bascom-AVR
147 High-voltage Programmer for AVR Microcontrollers
153 .. UART to RS232 or USB adapters
157 .. LCD adapter for 16x2 and 8x2 LCD modules

159159 PRACTICAL PROJECT PRACTICAL PROJECTSS

There should be many practical projects in every book for programmers and this book is no excep-
tion. Bascom-AVR, in conjunction with AVR microcontrollers, is a winning combination when design-
ing a simple (but very powerful) I2C analyzer. Other projects, like a Frequency generator, Frequency
counter, a simple but accurate clock and a Metal detector are just a few of the projects that can be
found in this chapter.

AVR microcontrollers are user-friendly, so get to know them better!

161 .. . I2C monitor
165 .. . Programmable IR sender/receiver
173 .. .“Bare-bones” programmable electronic load
177 ..A Frequency Reference Using the ATtiny2313
183 .. .An ATtiny2313 Frequency meter
189 .. . Simple RTC - Real Time Clock
191 .. The RFM12B expansion board
197 .. Shepherd’s fire
201 ..Metal detector

209 PINOUT FOR THE AVR MICROCONTROLLERS209 PINOUT FOR THE AVR MICROCONTROLLERS

209 .. ATtiny25 \ ATtiny45 \ ATtiny85
209 .. ATtiny2313 \ ATtiny4313
209 ..ATmega8 \ ATmega16
210 .. . ATmega32
210 .. . ATmega8515
210 ATmega164 \ ATmega324 \ ATmega644 \ ATmega1284

7

w w w . s v e t - e l . s i \ e n g l i s h

Inputs & Outputs

In microcontroller applications push buttons are used in most cases. How to use them
without unwanted contact «bounce« (what is debouncing anyway?), how we can
intelligently increase the number of I/O pins of a microcontroller, driving DC motors
and becoming familiar with PWM, are topics of this chapter.

Get your hands on an AVR microcontroller with help from
Bascom-AVR and start controlling the world around you!

25

w w w . s v e t - e l . s i \ e n g l i s h

Bascom’s Debounce state-
ment solves this problem,
by checking the switch’s
state over again a bit later,
when a level change is
detected at an input pin.
For example, if Debounce
is configured to recognise
a falling edge at an input
pin (a logical level change
from High to Low), it will
delay the program execu-
tion for 25 ms and then
check the input pin again
to see if it is still at a logic
“0” or not. If it is, an asso-
ciated subroutine will be
executed. If not, the level
change will be considered
as just a “bounce”, and will
be ignored. This reduces
the probability of false
readings significantly. Also,
the Debounce statement
reacts to any change of
input state only once, and does not block program ex-
ecution while waiting for the desired state change to
happen.

From my early days with Bascom, I realised the value of
the Debounce statement and have even succeeded in
expanding its capabilities. Let’s see how!

Debouncing using external interrupts
The test circuit shown in Figure 1 is designed for testing
the behaviour of the Debounce statement. An example
of a suitable test program follows:

‘Program *** Debounce1 ***

Dim Up_dn_counter As Byte

Sw1_pin Alias Pind.2
Confi g Sw1_pin = Input
Sw2_pin Alias Pind.3
Confi g Sw2_pin = Input

Improved Debounce Routines

Anyone who has ever tried using a microcontroller to count how many times a switch or any
other mechanical contact has changed state, will certainly agree that this is not a simple task.
The problem is that mechanical contacts “bounce” when changing state. The microcontroller
is fast enough to register not only the “real” change of state, but also those unwanted changes
caused by contact “bounce”. Therefore, it’s common that a single push of a switch can register
as multiple switch closures.

Up_dn_counter = 100

Do
 Debounce Sw1_pin , 0 , Sw1_sub , Sub
 Debounce Sw2_pin , 0 , Sw2_sub , Sub
 Home L
 Lcd “Counter = “ ; Up_dn_counter ; “ “
‘do whatever
Loop

Sw1_sub:
 If Up_dn_counter > 0 Then
 Decr Up_dn_counter
 End If
Return

Sw2_sub:
 If Up_dn_counter < 255 Then
 Incr Up_dn_counter
 End If
Return

Figure 1: Test circuit for an improved Debounce

BY VLADIMIR MITROVIĆBY VLADIMIR MITROVIĆ

44

w w w . s v e t - e l . s i \ e n g l i s h

The cable connects the non-inverting inputs of the Pow-
er module to the pins of the selected I/O port, as well as
the ground planes of both devices, and provides the
positive voltage supply from MPIN to the Power module.
This voltage (+5 V or +3.3 V) is used only for LED1 - the
Power module requires its own power supply. The output
voltage of this supply should be selected according to
the requirements of the loads connected to the M0-M7

output terminals. You must allow for a 0.5-1.5 voltage
drop within driver ICs IC1-IC4, depending upon the load
current and the way in which the loads are connected
- see the L272M data-sheet. The output voltage should
be stable (but it does not have to be regulated) and the
power rating depends upon the sum of the maximum
currents through all connected loads.

Figure 3 shows how to connect the Power module to
MPIN development boord. Although PORTD is used for
this connection, any one of PORTA-PORTD connectors
on MiniPin II or PORTA-PORTF on MegaPin can be used.
Of course, which ports can actually be used depends
upon the installed microcontroller and other devices
(switches, 1-wire components etc.) that may already be
connected to some of the I/O pins. In the following text,

Figure 2: Sketch of the connecting cable

Figure 3: How to connect a Power module to MiniPin II (top) or to MegaPin (bottom)

47

w w w . s v e t - e l . s i \ e n g l i s h

NOTE

 ‘a while
Gosub Motor1_stop ‘stop Motor1

DC motor – changing the direction of
rotation
If we want to control the direction of rotation, we have
to connect a DC motor between two power outputs. For
example, Motor3 is connected between the M2 and the
M3 outputs, as shown in Figure 5. This motor is stopped
if both control outputs are at the same logic level and
rotates if the control outputs are at different logic levels.
The direction of rotation is determined by the logic levels
on the outputs (Low-High or High-Low).

Control subroutines for a motor connected as Mo-
tor3 are:

‘* DC Motor3 subroutines

Motor3_stop: ‘stop Motor3
 PORTD.2 = 0
 PORTD.3 = 0
Return

Motor3_left: ‘start Motor3,
 ‘left rotation
Motor3_ccw: ‘start Motor3,
 ‘CCW (alternate label)
 PORTD.2 = 1
 PORTD.3 = 0
Return

Motor3_right: ‘start Motor3,
 ‘right rotation
Motor3_cw: ‘start Motor3,
 ‘CW (alternate label)
 PORTD.2 = 0
 PORTD.3 = 1
Return

Now we can control Motor3 by calling appropriate sub-
routines:

Gosub Motor3_left ‘start Motor3,
 ‘left rotation
Wait 5 ‘let it run
 ‘for a while
Gosub Motor3_stop ‘stop Motor3
Wait 5
Gosub Motor3_right ‘start Motor3,
 ‘right rotation
Wait 5 ‘let it run
 ‘for a while
Gosub Motor3_stop ‘stop Motor3

DC motor - change of rotation speed
We can effectively control the speed of a DC motor using
pulse-width modulation (PWM). In the following example,
the voltage across Motor1 is alternatively switched on
and off in 10 ms intervals. The average current thru the
motor is halved and the motor rotates more slowly:

‘* DC Motor1 speed control

Dim Dc_i As Byte
For Dc_i = 1 To 250 ‘speed is
 ‘controlled
 Gosub Motor1_start ‘by alternative
 ‘switching on
 Waitms 10
 Gosub Motor1_stop ‘and switching off
 Waitms 10 ‘the motor
Next

The duration of one cycle (ON + OFF) is 20 ms, which
results in a frequency of 50 Hz (i.e., the motor is switched
on and off 50 times per second). This value was suit-
able for all small DC motors that I tested. If the motor
being used works improperly (if it jerks or hums), double
the switching frequency by shortening the ON and OFF
intervals to 5 ms.

The motor speed is controlled by changing the ratio
between the ON and OFF periods. For example, if we
want to slow down the motor, we should shorten the ON
and extend the OFF period. Keep the total cycle time
unchanged when changing speed (for example, if you
shorten the ON interval to 5 ms, the OFF interval should
be 15 ms). Every DC motor has a minimal ON:OFF ratio
at which it stops rotating.

The total motor running time equals the execution
time of the For-Next loop. In the above example, it is
250*20ms=5s. For longer periods, variable Dc_i should
be dimensioned as Word or Long. Although fully func-
tional, the preceding example has a significant disad-
vantage: the program cannot perform other functions
while controlling the motor. A better solution is to imple-
ment a motor control within an interrupt service routine
that gets invoked frequently.

Dim Motor1_speed As Byte
On Timer0 Tim0_sub
Enable Interrupts
Confi g Timer0 = Timer , Prescale = 64

The terms “left” and “right” refer to “coun-
ter-clockwise” and “clockwise”, respec-
tively. The actual direction of rotation
also depends upon the way the motor is
connected to the Power module. If the
motor rotates in the opposite direction
than expected, reverse the connecting
wires or complement the logic levels of
the control outputs in the program (in this
example PORTD.2 and PORTD.3).

92

w w w . s v e t - e l . s i \ e n g l i s h

and temperature, but values that are used, along with
the EEPROM constants, in calculating the actual pres-
sure and temperature.

There are two I2C addresses that are used to communi-
cate with the HP03M’s sensors:

EE hex to write to the sensor, »

EF hex to read from the sensor. »

Flow diagram to read air pressure is as follows:

Flow diagram to read temperature is as follows:

S I2C Start »

A ACK »

P I2C Stop »

N NCK »

D pause 40 ms »

MSB re sul t higher byte »

LSB re sult lower byte »

Let me point out that Bascom-AVR knows ACK com-
mand only at reading telegram on I2C bus but not at
writing. Why has HopeRF included ACK also at writing it is
not known to me.

The sensor’s manufacturer has issued some warnings:
before starting an A/D conversion, set XCLR to a logi- »

cal 1, to take the device out of the Reset state,
after power-up, you should ignore the first data read- »

ing and use only subsequent ones.

Figure 3 shows a schematic diagram of the sensor
connected to the microcontroller. For the prototype, I
soldered the sensor to a DIL8 socket, which I then sol-
dered to the protoboard. For the A/D convertor’s clock
we would normally use an external
32.768 kHz crystal oscillator. Instead,
I decided to generate that using a
PWM signal from the microcontroller.

The Bascom program
At the start of the program, we have
to define the microcontroller being
used, the crystal frequency and the
baud rate (for communication). Since
a PWM signal will be used for generat-
ing the 32.768 KHz clock source, we
define Timer1 as a PWM generator
and the OC1A pin as the PWM output
pin. The OCR1A value that is needed
to generate this frequency is calcu-

lated with this simple formula:

OCR1A=(Fcrystal/(2*32768))-1

Variable N represents the prescale factor (1, 8, 32, 64,
128, 256, or 1024. Timer1 configuration looks like this:

Con fi g Ti mer1 = Ti mer , Pre sca le = 1 , _
Com pa re A = Tog gle , Cle ar Ti mer = 1
Start Ti mer1
Ocr1a = 182 ‘F=32.768 kHz
Oc1a_pin Ali as Portb.1 ‘PWM output signal
 ‘connect to pin MCLK
Con fi g Oc1a_pin = Out put

Let’s continue with the definitions of the other pins that
are used: SCL, SDA and XCLR, all of which should be
immediately set to a low level. According to the da-
tasheet, the HP03M has a max. I2C clock frequency of
100 kHz. Since I was using this particular sensor, I had to
introduce an I2C delay:

 Con fi g I2cdelay = 15

Note that the HM03MA has a max. I2C clock frequen-
cy of 500 kHz, and therefore does not need this state-
ment.

Next, the variables and constants, needed to calculate
the result, are dimensioned/declared. There are a cou-
ple of constants needed for the calculations. I decided
to define them in advance, as follows.

Const K1 = 32 ‘2^5
Const K2 = 16384 ‘2^14
Const K3 = 65536 ‘2^16
Const K4 = 1024 ‘2^10
Const K5 = 67108864 ‘2^26
Const Adresw = &HA0 ‘EE PROM WRITE
 ‘ADDRESS
Const Adre sr = &HA1 ‘EE PROM RE AD
 ‘ADDRESS

We also have to define the LCD display parameters, if
we use it for debugging. Similarly, we can also use the

Figure 3: Typical application circuit.

84

w w w . s v e t - e l . s i \ e n g l i s h

Example program ID

Name: Test_SD_B_Read_HW-UART.bas

Microcontroller: ATmega32

Testing circuit: Figure 1

MiniPin compatibility: yes

MegaPin compatibility: yes

Program tests SD memory card on SD card adapter; does reading
from the card

Example program ID

Name: Test_SD_B_Write_HW-UART.bas

Microcontroller: ATmega32

Testing circuit: Figure 1

MiniPin compatibility: yes

MegaPin compatibility: yes

Program tests SD memory card on SD card adapter; does writing to the card

Example program ID

Name: Config_MMC.bas

Microcontroller: ATmega32

Testing circuit: Figure 1

MiniPin compatibility: yes

MegaPin compatibility: yes

Configures SD card

Example program ID

Name: CONFIG_AVR-DOS.bas

Microcontroller: ATmega32

Testing circuit: Figure 1

MiniPin compatibility: yes

MegaPin compatibility: yes

Configures AVR-DOS. Note: this file cannot be used for commercial purposes.
Contact author in that case

Conclusion
Writing data and event - logging to an MMC card has
proven to be an excellent tool for monitoring what is
happening within a program, as well as for debugging.
It’s also very handy for logging events like when an alarm
was tripped, who has entered a code via the keyboard,
or for logging temperature and other parameters over
long periods of time. This data can be saved in such a
way that MS Excel or other spreadsheet programs can
read the file.

Unfortunately, AVR-DOS requires a significant amount of
RAM: you can see this if you examine the Bascom-AVR
Report file (using Program/Show Result in the Bascom-
AVR menu bar). This will limit your choice of AVR micro-
controllers to those with sufficient RAM resources.

133

w w w . s v e t - e l . s i \ e n g l i s h

As mentioned, we can de-
bug in many ways. Gen-
erally we use a principle
of displaying “debugging
information” on an LCD
display or terminal window.
The data displayed can
determine whether or not
our program is performing
properly.

That is a quite usable procedure if no debugging tools
are on hand, however, this procedure is sometimes not
good enough. In such cases, we have to look “inside”
the microcontroller to find those nasty bugs that may
be elusive. Atmel has provided many free software tools
that, in conjunction with suitable hardware, work very

Debugging Bascom programs in
AVR Studio

Debugging is a procedure, where we trace program flow with the help of suitable software and/
or hardware. While tracing program flow, we can find annoying “bugs” inside our program. If
we do not have suitable debugging hardware we can use a simulator, like the one included
in Bascom-AVR. We can also find problems by displaying some “debugging data” on an LCD
display or in a terminal window, if we send data out to the RS232 or USB port. I will show you how
you can debug Bascom programs with a help of the AVR Studio 4 program and the MegaPin
development board.

well. A good example is Atmel’s JTAG ICE, which we’ll
demonstrate in conjunction with the MegaPin develop-
ment board (which has proven to be a real multi-pur-
pose development board!)

What do we need?
To debug using the AVR Studio 4 program, some device
preparation (hardware & software) needs to be done.
For hardware, you will need a JTAG ICE unit, the source
of which can be found on the web. Alternately, you can
use the JTAG ICE included on the MegaPin board. One
must use an AVR device that supports JTAG, such as the
ATmega16, ATmega32, to name a few. Also, we must
enable JTAG operation with the appropriate Fuse bit, as
shown in Figure 1. Note that all AVRs with JTAG avail-
able come factory-programmed with the JTAG Fuse bit
enabled.

The JTAG Fuse bit can be turned on with the SPI program-

Figure 1: Enabling the JTAG Fuse bit
Figure 2: Setting the Fuse bit within the

STK500 native programmer window

BY JURIJ MIKELNBY JURIJ MIKELN

175

w w w . s v e t - e l . s i \ e n g l i s h

Example program ID

Name: PWM load.bas

Microcontroller: Any ATtiny AVRs

Testing circuit: Figure 1

MiniPin compatibility: /

MegaPin compatibility: /

Use multi_lcd-SPI.lib

Figure 5: Parallel connection of all MOSFETs

Figure 4: Connection of two parallel MOSFETs to GND

lcd-spi library, enabling the LCD display to
work. Without these statements the PWM
electronic load will not perform correctly
and LCD will not display anything.

As it stands, this program does not display
on the LCD the internal resistance of the
power transistors. That is a drawback, but
you have to bear in mind that each power
output transistor has its own internal resist-
ance depending upon the Gate-Source
drive voltage. That would mean that we
would have to incorporate these inter-
nal resistance figures into a table in the
program, and change the table if other
transistor were used. That would be very
impractical, so we decided that the LCD
will show PWM drive value ranging from 0
to 255, which represents the highest and
lowest resistance respectively.

Possible improvements
When testing the electronic power load,
we noticed that the heat was not evenly
distributed amongst the output transistors.
That was due to the temperature depend-
ence of the MOSFET’s internal resistance.

To improve that we could measure tem-
perature and change PWM drive signal
accordingly. A good solution is to connect
a low Ohm resistance from the Source of
each transistor to ground. The resistance
should be 0.5 Ohms or less.

Conclusion
This project is “bare-bones” in both circuitry
and software. The LCD displays only the
PWM value and not the resistance, be-
cause setting/displaying the MOSFET’s in-
ternal resistance would be very impractical
as it changes with each transistor and with
temperature. For those of you who would
like to use this electronic load with larger
currents, let me tell you that I have successfully tried the
IRFP4368PBF, which is rated for 350 A! I wish you success-
ful “electronic loading”!

Example program ID - Library

Name: lcd-spi.lib

Microcontroller: /

Testing circuit: /

MiniPin compatibility: /

MegaPin compatibility: /

 Library for use with above

193

w w w . s v e t - e l . s i \ e n g l i s h

Now let’s look at the software.
The RFM12B module is configured once, at the start of
the program. A description of all the commands can
be found in the RFM12B datasheet. In the configuration
section of the datasheet, a list of the various settings is
given (channel No., Baud rate etc.). The same initializa-
tion settings must also be included in the receiver pro-
gram as well.

After configuration, the program will flash both the Tx
and Rx LEDs as a status indication.

Following initialization, the main program loops continu-
ously: checking both the state of the switches as well as
the packet “transmission complete” flag. Based upon
those checks, it calls the appropriate routines.

A Short description of the subroutines
Subroutine for switch 1 (sends only one data packet
when switch is pressed):

transmits “T1 on.....” and displays the same message »

on the LCD,
checks the state of switch T1, »

wait until T1 switch is released, »

return to main loop. »

Subroutine for switch 2 (sends data continuously while
T2 switch is pressed):

sends “T2 on” and displays the same message »

on the LCD,
check the state of switch 2, »

if switch T2 is still pressed then go back to the start of »

this subroutine,
else return to main loop. »

The Receiving program description
The receiving program follows the flowchart shown in
Figure 5. (Not shown is the routine which displays data
on the LCD.)

The received data is analyzed and if it matches one
of the acceptable patterns, a suitable subroutine is ex-
ecuted.

The receiving module configuration is similar to that
of the transmitting module. It’s done once at power-
up. After configuration, the Rx and Tx LEDs are flashed,
as a status indication. In the main loop, the Test flag is
checked, to see whether an acceptable data pattern
was received. If not, then the program returns to a start
of the main loop. If the flag is set, then we analyze the
received data in a suitable subroutine.

A Short description of the other subroutines
An Interrupt subroutine is executed every time a byte is
received. This byte is added to a string. When the byte
equals a CR (ASCII value = 13), then this indicates the
end of the string, and we set the Test flag. Then the sub-
routine returns to the main program loop.

The String analyze subroutine compares the incoming

string, and takes action according to the value of the
string. It also displays the data on the LCD.

The RFM12B EB schematic diagram
The schematic diagram, shown in Figure 6, is simple.
The board contains two IDC male connectors that mate
with the MiniPin II/Megapin board using flat cables. It
gets its power from the host development board. You’ll
notice three diodes (U4, U5 & U6) in the circuit, which are
needed to lower the power supply from 5V to the 3.2
Volts needed by the RFM12B module.

Figure 5: The Receiving program flowchart

209

w w w . s v e t - e l . s i \ e n g l i s h

Pinout for the AVR microcontrollers

ATMEGA8

ATTINY2313 \ ATTINY4313

ATTINY25 \ ATTINY45 \ ATTINY85

ATMEGA16

210

w w w . s v e t - e l . s i \ e n g l i s h

ATMEGA164 \ATMEGA324 \ ATMEGA644 \ ATMEGA1284

ATMEGA8515

ATMEGA32

